Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 327, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566233

RESUMO

BACKGROUND: Regulatory T cells (Tregs) are crucial in maintaining immune homeostasis and preventing autoimmunity and inflammation. A proportion of Treg cells can lose Foxp3 expression and become unstable under inflammation conditions. The precise mechanisms underlying this phenomenon remain unclear. METHODS: The PI16 gene knockout mice (PI16fl/flFoxp3Cre) in Treg were constructed, and the genotypes were identified. The proportion and phenotypic differences of immune cells in 8-week-old mice were detected by cell counter and flow cytometry. Two groups of mouse Naïve CD4+T cells were induced to differentiate into iTreg cells to observe the effect of PI16 on the differentiation and proliferation of iTreg cells, CD4+CD25+Treg and CD4+CD25- effector T cells (Teff) were selected and co-cultured with antigen presenting cells (APC) to observe the effect of PI16 on the inhibitory ability of Treg cells in vitro. The effects of directed knockout of PI16 in Treg cells on inflammatory symptoms, histopathological changes and immune cell expression in mice with enteritis and autoimmune arthritis were observed by constructing the model of antigen-induced arthritis (AIA) and colitis induced by dextran sulfate sodium salt (DSS). RESULTS: We identified peptidase inhibitor 16 (PI16) as a negative regulator of Treg cells. Our findings demonstrate that conditional knock-out of PI16 in Tregs significantly enhances their differentiation and suppressive functions. The conditional knockout of the PI16 gene resulted in a significantly higher abundance of Foxp3 expression (35.12 ± 5.71% vs. 20.00 ± 1.61%, p = 0.034) in iTreg cells induced in vitro compared to wild-type mice. Mice with Treg cell-specific PI16 ablation are protected from autoimmune arthritis (AIA) and dextran sulfate sodium (DSS)-induced colitis development. The AIA model of PI16CKO is characterized by the reduction of joint structure and the attenuation of synovial inflammation and in DSS-induced colitis model, conditional knockout of the PI16 reduce intestinal structural damage. Additionally, we found that the deletion of the PI16 gene in Treg can increase the proportion of Treg (1.46 ± 0.14% vs. 0.64 ± 0.07%, p < 0.0001) and decrease the proportion of Th17 (1.00 ± 0.12% vs. 3.84 ± 0.64%, p = 0.001). This change will enhance the shift of Th17/Treg toward Treg cells in AIA arthritis model (0.71 ± 0.06% vs. 8.07 ± 1.98%, p = 0.003). In DSS-induced colitis model of PI16CKO, the proportion of Treg in spleen was significantly increased (1.40 ± 0.15% vs. 0.50 ± 0.11%, p = 0.003), Th17 (2.18 ± 0.55% vs. 6.42 ± 1.47%, p = 0.017), Th1 (3.42 ± 0.19% vs. 6.59 ± 1.28%, p = 0.028) and Th2 (1.52 ± 0.27% vs. 2.76 ± 0.38%, p = 0.018) in spleen was significantly decreased and the Th17/Treg balance swift toward Treg cells (1.44 ± 0.50% vs. 24.09 ± 7.18%, p = 0.012). CONCLUSION: PI16 plays an essential role in inhibiting Treg cell differentiation and function. Conditional knock out PI16 gene in Treg can promote the Treg/Th17 balance towards Treg dominance, thereby alleviating the condition. Targeting PI16 may facilitate Treg cell-based therapies for preventing autoimmune diseases and inflammatory diseases. The research provides us with novel insights and future research avenues for the treatment of autoimmune diseases, particularly arthritis and colitis.


Assuntos
Artrite , Doenças Autoimunes , Colite , Animais , Camundongos , Artrite/metabolismo , Artrite/patologia , Doenças Autoimunes/metabolismo , Diferenciação Celular , Colite/induzido quimicamente , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Inflamação/patologia , Camundongos Endogâmicos C57BL , Linfócitos T Reguladores , Células Th17
2.
Int J Med Sci ; 21(2): 306-318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38169576

RESUMO

Vascular calcification (VC) is a known predictor of cardiovascular events in patients with atherosclerosis and chronic renal disease. However, the exact relationship between VC and cardiovascular mortality remains unclear. Herein, we investigated the underlying mechanisms between VC progression, arterial stiffness, and cardiac dysfunction. C57BL/6 mice were administered intraperitoneally vitamin D3 (VD3) at a dosage of 35×104 IU/day for 14 days. At day 42, VC extent, artery elasticity, carotid artery blood flow, aorta pulse propagation velocity, cardiac function, and pathological changes were evaluated. Heart apoptosis was detected using TUNEL and immunohistochemistry staining. In vitro, rat cardiomyocytes H9C2 were exposed to media from calcified rat vascular smooth muscle cells (VSMCs) cultured in calcification medium, and then H9C2 apoptosis and gene expression related to cardiac function were assessed. VD3-treated mice displayed a significant aortic calcification, increased pulse propagation velocity of aortae, and reduced cardiac function. Aortae showed increased calcification and elastolysis, with increased heart apoptosis. Hearts demonstrated higher levels of ANP, BNP, MMP2, and lower levels of bcl2/bax. Moreover, calcified rat VSMC media induced H9C2 apoptosis and upregulated genes expression linked to cardiac dysfunction. Our data provide evidence that VC accelerates cardiac dysfunction, partially by inducing cardiomyocytes apoptosis.


Assuntos
Cardiopatias , Calcificação Vascular , Humanos , Ratos , Camundongos , Animais , Músculo Liso Vascular/metabolismo , Miócitos Cardíacos/patologia , Camundongos Endogâmicos C57BL , Calcificação Vascular/patologia , Apoptose , Miócitos de Músculo Liso/metabolismo
3.
BMC Genomics ; 24(1): 450, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37563706

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is often accompanied by a common extra-articular manifestation known as RA-related usual interstitial pneumonia (RA-UIP), which is associated with a poor prognosis. However, the mechanism remains unclear. To identify potential mechanisms, we conducted bioinformatics analysis based on high-throughput sequencing of the Gene Expression Omnibus (GEO) database. RESULTS: Weighted gene co-expression network analysis (WGCNA) analysis identified 2 RA-positive related modules and 4 idiopathic pulmonary fibrosis (IPF)-positive related modules. A total of 553 overlapped differentially expressed genes (DEG) were obtained, of which 144 in the above modules were further analyzed. The biological process of "oxidative phosphorylation" was found to be the most relevant with both RA and IPF. Additionally, 498 up-regulated genes in lung tissues of RA-UIP were screened out and enriched by 7 clusters, of which 3 were closely related to immune regulation. The analysis of immune infiltration showed a characteristic distribution of peripheral immune cells in RA-UIP, compared with IPF-UIP in lung tissues. CONCLUSIONS: These results describe the complex molecular and functional landscape of RA-UIP, which will help illustrate the molecular pathological mechanism of RA-UIP and identify new biomarkers and therapeutic targets for RA-UIP in the future.


Assuntos
Artrite Reumatoide , Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Artrite Reumatoide/genética , Artrite Reumatoide/patologia , Biomarcadores
4.
J Am Heart Assoc ; 12(1): e027222, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36537334

RESUMO

Background Vascular calcification (VC), associated with enhanced cardiovascular morbidity and mortality, is characterized by the osteogenic transdifferentiation of vascular smooth muscle cells. Inflammation promotes VC initiation and progression. Interleukin (IL)-29, a newly discovered member of type III interferon, has recently been implicated in the pathogenesis of autoimmune diseases. Here we evaluated the role of IL-29 in the VC process and underlying inflammatory mechanisms. Methods and Results The mRNA expression of IL-29 was significantly increased and positively associated with an increase in BMP2 (bone morphogenetic protein 2) mRNA level in calcified carotid arteries from patients with coronary artery disease or chronic kidney disease. IL-29 and BMP2 proteins are colocalized in human calcified arteries. IL-29 binding to its specific receptor IL-28Rα (IL-28 receptor α) (IL-29/IL-28Rα) inhibited the proliferation of rat vascular smooth muscle cells without altering cell apoptosis or migration. IL-29 promoted the calcification of rat vascular smooth muscle cells and their osteogenic transdifferentiation in vitro as well as the rat aortic ring calcification ex vivo, induced by the calcification medium or osteogenic medium. The procalcification effect of IL-29 was reduced by pharmacological inhibition of IL-29/IL-28Rα binding as well as suppression of janus kinase 2/signal transducer and activator of transcription pathway activation, accompanied by decreased BMP2 expression in the cultured rat vascular smooth muscle cells. Conclusions These results suggest an important role of IL-29 in VC development, at least partly, via activating the janus kinase 2/signal transducer and activator of transcription 3 signaling. Inhibition of IL-29 or its specific receptor, IL-28Rα, may provide a novel strategy to reduce VC in patients with vascular diseases.


Assuntos
Proteína Morfogenética Óssea 2 , Calcificação Vascular , Humanos , Ratos , Animais , Proteína Morfogenética Óssea 2/genética , Janus Quinase 2/efeitos adversos , Janus Quinase 2/metabolismo , Citocinas/metabolismo , Calcificação Vascular/patologia , Células Cultivadas , RNA Mensageiro/metabolismo , Interleucinas/farmacologia , Miócitos de Músculo Liso/metabolismo , Fator de Transcrição STAT3/metabolismo
5.
BMC Cardiovasc Disord ; 22(1): 167, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35413799

RESUMO

BACKGROUND AND AIMS: Vascular calcification (VC) is a strong predictor of cardiovascular events and all-cause mortality in cardiovascular diseases (CVD). Renal dysfunction is closely related to VC. Serum creatinine, as an important indicator of renal function in chronic kidney disease (CKD), is closely associated with increased VC. Here, to explore the potential role of serum creatinine in CVD, we examined the association between serum creatinine level and aortic arch calcification (AAC) presence in a larger general population. METHODS: A total of 9067 participants aged > 45 years were included in this study. All participants underwent postero-anterior chest X-ray examination to diagnose AAC. According to the distribution characteristics, serum creatinine levels in male and female were divided into tertiles respectively. Univariate and multivariate logistic regression analysis were used to analyze the association between aortic calcification and serum creatinine. RESULTS: Participants included 3776 men and 5291 women, and 611 and 990 AAC were detected, respectively. Serum creatinine level in the female AAC group was significantly higher than that in the non-AAC group (p < 0.001), while there was no significant difference in male serum creatinine between the two groups (p = 0.241). After logistic regression analysis excluded confounding factors, with the first tertile of serum creatinine as the reference, multivariable-adjusted ORs and 95% CIs of the second and the highest tertile of female and male were 1.045 (0.856-1.276), 1.263 (1.036-1.539); 0.953 (0.761-1.193), 0.948 (0.741-1.198), respectively. CONCLUSION: Elevated serum creatinine levels are independently associated with higher AAC incidence in female aged > 45 years old. Measuring serum creatinine levels may assist the early screening individuals at high risk of developing CVD. And higher attention should be given to female's serum creatinine levels in daily clinical practice.


Assuntos
Doenças da Aorta , Doenças Cardiovasculares , Calcificação Vascular , Adulto , Idoso , Aorta Abdominal , Aorta Torácica/diagnóstico por imagem , Doenças da Aorta/complicações , Doenças da Aorta/diagnóstico por imagem , Doenças da Aorta/epidemiologia , Doenças Cardiovasculares/complicações , China/epidemiologia , Creatinina , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco , Calcificação Vascular/diagnóstico por imagem , Calcificação Vascular/epidemiologia
6.
Int J Mol Med ; 47(1): 137-150, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33236134

RESUMO

Overproduction of pro­inflammatory cytokines in the aged, which is called inflammaging, leads to the deterioration of periodontitis. Toll­like receptor 4 (TLR4) plays a role in the regulation of cellular senescence, and its expression increases with age. However, there has been limited research into the molecular mechanisms underlying the onset of periodontal inflammaging, and the interplay between TLR4 and inflammaging. In the present study, wild­type and TLR4 gene knockout mice were used to investigate the activation of the TLR4 pathway in mouse periodontitis and the expression of the nucleotide­binding and oligomerization domain­like receptor 3 (NLRP3) inflammasome, an upstream immune checkpoint during the development of inflammaging. Activation of TLR4 in a mouse model of periodontitis enhanced the expression of a senescence­associated secretory phenotype (SASP), which boosted the inflammaging process. Conversely, TLR4 activation downregulated the expression of B cell­specific Moloney murine leukemia virus integration site 1 (Bmi­1) and promoted the priming of NLRP3 inflammasome, both of which are regulators of SASP. Treating gingival fibroblasts with Bmi­1 inhibitor PTC209, it was demonstrated that TLR4 activated the NLRP3 pathway and the inflammaging process by suppressing Bmi­1. In addition, there was a significant reduction in the expression of Bmi­1 expression in the gingiva of patients with periodontitis compared with healthy controls. In conclusion, the present study demonstrated that TLR4 acted by inhibiting Bmi­1 to enhance the NLRP3 pathway and SASP factors. This cascade of reactions may contribute to the senescence of the periodontium.


Assuntos
Regulação da Expressão Gênica , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Periodontite/metabolismo , Complexo Repressor Polycomb 1/biossíntese , Proteínas Proto-Oncogênicas/biossíntese , Receptor 4 Toll-Like/metabolismo , Animais , Feminino , Inflamassomos/genética , Inflamação/genética , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Periodontite/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Receptor 4 Toll-Like/genética
7.
Oncol Lett ; 18(1): 181-188, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31289487

RESUMO

Lung cancer is the leading cause of cancer-associated mortality. Tumor-associated neutrophils represent a large portion of inflammatory cells within the lung tumor microenvironment. However, the roles of neutrophil extracellular traps (NETs) in lung cancer remain unclear. In the present study, it was identified that Lewis lung carcinoma cells actively released the danger-associated molecular pattern protein high mobility group box 1 (HMGB1). Furthermore, HMGB1 in lung cancer cell supernatants promoted the formation of neutrophil extracellular traps (NETs), which was dependent on Toll-like receptor 4 (TLR4). The downstream molecules of TLR4, including myeloid differentiation factor 88, TIR-domain-containing adapter-inducing interferon-ß, p38 mitogen-activated protein kinases (p38 MAPKs) and extracellular signal-regulated kinases (ERKs), were activated during the formation of NETs. In addition, inhibition of p38 MAPKs or ERKs significantly decreased NETs. Morphine, an additional ligand for TLR4, aggravated the NETs induced by lung cancer cells. The present study revealed novel mechanisms in tumor-associated NET formation.

8.
Int J Oncol ; 55(1): 69-80, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115506

RESUMO

Neutrophil infiltration is frequently observed in lung cancer tissues. Extracellular RNAs (exRNAs) may facilitate tumor progression. The present study investigated the cross­talk of tumor exRNAs and neutrophil extracellular traps (NETs) in lung cancer. Lewis lung carcinoma (LLC) cells were cultured with the deprived sera. And the cell culture supernatants (CCS) were analyzed in vitro and in vivo. The results revealed that exRNAs from lung cancer CCS promoted the inflammatory cytokine interleukin­1ß and reduced the vascular cell adhesion molecule­1 expression in lung epithelial cells. Lung cancer CCS­treated epithelial cells induced the production of NETs. By contrast, NETs reduced the tight junction protein claudin­5 in epithelial cells. Furthermore, NETs caused the necrosis of epithelial cells, which resulted in the release of exRNAs. In mice, lung cancer cells instilled in the lung recruited neutrophils and initiated NETs. In patients with lung cancer, NETs were also observed. These results suggested that exRNAs in the cell culture supernatant may indirectly induce NETs and contribute to lung cancer oncogenesis.


Assuntos
Carcinoma Pulmonar de Lewis/genética , Células Epiteliais/imunologia , Armadilhas Extracelulares/genética , RNA Neoplásico/genética , Animais , Carcinoma Pulmonar de Lewis/imunologia , Carcinoma Pulmonar de Lewis/patologia , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Células Epiteliais/patologia , Feminino , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neoplásicas , Infiltração de Neutrófilos , Neutrófilos/imunologia , Neutrófilos/patologia , Molécula 1 de Adesão de Célula Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...